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NOTATION 

Ab 

cN 

cn 

cP 

cY 

cY 

d 

f 

II 

'li 

M 

RC 

rC 

Re 

L 
h 

-i 
uV 

base area of body 

normal force coefficient = normal force 
qm Ab 

local normal force coefficient per unit length divided 
by fineness ratio 

pressure coefficient = y 
m 

side force coefficient = side force 
9, Ab 

local side force coefficient per unit length divided by 
fineness ratio 

body cross section diameter or for bodies with non- 
circular cross section = 2JAb 

IT 

fineness ratio = e/d 

body length 

vortex segment length 

free stream Mach nutier 

radius of curvature of circular are connecting three 
adjacent vortex segment endpoints 

assumed radius for vortex core for self-induced velocity 
calculations 

Reynolds number based on a one foot length scale in the 
MX wind tunnel tests 

free stream velocity vector 

vortex induced velocity vector 

velocity vector induced by a single vortex segment or 
ray 
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NOTATION (CONTINUED) 

X, X 

Y, y 

axial distance along body centerline scaled by body 
length 

distance above body centerline in angle of attack 
plane scaled by body length 

distance from body centerline measured normal to x 
and y axes and scaled by body length 

angle of attack 

vortex strength scaled by body length and free stream 
velocity 

integral cutoff distance in self-induced vortex velocity 

asymptotic angle of vortex to body centerline 

source density strength 

roll angle of velocity potential 

vortex direction parameter = tan c/tan cx 
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A THREE DIMENSIONAL VORTEX WAKE MODEL 

FOR MISSILES AT HIGH ANGLES OF ATTACK 

J. Steven Sheffield and F. D. Deffenbaugh 

TRW Systems and Energy, Inc. 

SUMMARY 

A three dimensional model for the steady flow past missile and 

aircraft nose shaped bodies is presented based on augmenting a potential 

solution with a wake composed of vortex filaments. The vortex positions 

are determined by the requirement that they in some sense align with the 

flow. The aerodynamic loads on the body are compared with experimental 

values and used to evaluate the model. 

The vortex positions compare well with flow visualization results for 

slender bodies at high angles of attack. The approximations in the wake near 

the body cause peaks in the force distributions more severe than in the 

measured values. 

For given vortex strengths and body attachment points multiple steady 

vortex positions were not found. 



CHAPTER 1. INTRODUCTION 

The vortex wake which develops due to separated flow over missiles 

and aircraft noses at high angle of attack results in augmented lift 

and side forces unpredicted by slender body theory. Wind tunnel 

investigations have revealed that a variety of vortex formations can 

develop for variations in angle of attack, flow conditions and body 

geometry. Seemingly slight changes in configuration such as rolling the 

model can result in the side force changing magnitude and even direction. 

Examining a simple model for the possible vortex wake configurations 

and the relation between those configurations and the forces on the body 

could help the understanding of the physical phenomenon responsible for 

these experimental results. 

1.1 Background 

Much of the work examining the wake behind bodies of revolution has 

been based on the crossflow analogy, replacing the steady three dimensional 

problem with a time dependent,two dimensional one. Thompson and Morrison (1) 

suggested that the wake in the crossflow plane be modeled using a Karman 

vortex street. In their experiments with slender cone cylinders, the wake 

behavior could be correlated over a large range of Mach number and angle of 

attack using crossflow Karman vortex street relations. They found that a 

combination of the sweepback principle with the vortex street theory, 

requiring the vortex street velocity to be cancelled by the component of the 

freestream velocity normal to the vortex lines provided reasonable 

estimates for the experimentally measured vortex strength. 

A number of investigators have since developed predictive techniques 

using Karman vortex street theory. The required empirical input is often 

the Thompson and Morrison correlations. Fidler (2), Kubin (3), and Kao (4) 

all use this approach with minor variations to account for the nose vortices 

which do not follow the pattern of the Karman vortex street. . 

A somewhat less empirical approach involves the lumped vortex crossflow 

model, initially suggested by Bryson in Reference 5. In this model a 



potential point vortex is joined to the clyinder by a feeding sheet of 

negligible strength. The strength and motion of the vortex is found by 

requiring the force on each point vortex to balance the force on the vortex 

sheet. The force per unit length on the body cross section is equal to the 

) used 

time rate of change of momentum in the crossflow plane. Schindel (6) 

extended Bryson's model to include elliptic cross sections; Wardlaw (7 

the same technique for asymmetric vortices. 

The most recent models of the wake are those which replace Bryson ‘5 

feeding sheet with a number of free point vortices which are allowed to 

roll up to form a concentrated vortex. Angelucci (8) and Marshall and 

Deffenbaugh (9) used this model for symmetric shedding. Wardlaw (10) and 

Deffenbaugh (11) have extended the work to include asymmetric vortex 

development. Angelucci calculates the force distribution using the vortex 

impulse theorem. Wardlaw uses a momentum balance similar to Bryson. 

Marshall and Deffenbaugh calculate the circumferential pressure distribution 

and obtain the forces by pressure integration. In the approach used by 

Marshall and Deffenbaugh, the boundary layer is solved for numerically, 

which eliminates the need to specify the separation points empirically as 

in all the other flow field models, and secondary vortex formation is 

accounted for. The backflow induced secondary vortex formation must be 

accounted for to determine the proper vortex wake structure and pressure 

distribution. 

Experimental investigators have attempted to identify the wake 

structure with the resulting loads on the bodies. The vortex structure 

has been examined by several visualization and measurement methods. 

Jorgensen (12) used the vapor-screen technique to identify the vortex 

formation at several stations along the body and oil-flow photographs to 

examine the flow patterns on the surfaces of the bodies. Force measure- 

ments are taken on many of the same bodies. Clark (13) and Spangler and 

Mendenhall (14) used air bubbles in water tunnel experiments to identify 

the vortices, laser-Doppler anemometer measurements for the flow 

velocities and internal strain gages to measure forces and moments on the 

structure. The velocity measurements can be integrated to estimate the 

vortex strength to go along with the measured vortex positions and body forces. 
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The MX wind tunnel tests (11 and 15-18) measured pressure on the body 
and surveyed the wake using a rake probe. The body pressures can be 

integrated to give force distributions associated with the probe measured 

wake structure. In the work of Thompson and Morrison schlieren photographs 

were used to determine vortex positions and Pitot pressure measurements to 

estimate the flow velocities and resulting vortex strengths. Laser Doppler 

velocimeter measurements have been used by Owen and Johnson (19) and Yanta 

and Wardlaw (20) to determine the wake flow in crossflow planes. From the 

velocity profiles the vortex position and strengths can be determined. 

The experimental work has identified vortex asymmetries which appear 

in conjunction with asymmetric loads on the body. However, a range of 

value for the side force are obtained for slight changes in configurations. 

Figure 1 shows the variation in the side load distribution with roll angle 

on a slightly blunted ogive cylinder from the MX tests. These variations 

could possibly be attributed to an unsteady wake or to the existence of 

multiple steady positions. These possibilities cannot be directly 

investigated with a crossflow model for the wake development. However, 

a three dimensional model for the vortex wake configurations can be 

examined for multiple steady solutions. 

1.2 Model Objectives 

A three dimensional model is proposed which replaces the wake behind 

the missile or aircraft nose shaped body with line or curve vortex 

singularities and finds a steady configuration. This procedure makes no 

attempt to model the mechanism by which the vorticity moves into the 

vorticies but rather is concerned with the positions of the separated 

vortices and the influence of those on the body. Typical vortex strengths 

and initial positions are taken from the experimental results and cross- 

flow calculations. The objectives of this study are to 

l develop a three dimensional model for positioning vortex 
singularities in a steady configuration, 

l evaluate the resulting vortex positions by comparison with 
experimental positions, 

l examine the forces on the body as a result of the vortex wake 
and use those comparisons to improve the model, 
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l examine the possibility of multiple steady vortex positions for 
the same body and flow configuration, 

l and to find the limitation of such a model by examining the 
the detailed distributions of loads and pressures on the body. 



CHAPTER 2. SOLUTION METHOD 

The basis.of the model stems from the inclusion of the influence of 

concentrated vortex filaments with the Neumann potential flow solution technique 

developed by Smith and Hess (21). The algorithm starts with an initial 

guess for the vortex positions, solves for the velocities induced by the 

vortices and then finds the contribution to the flow necessary to satisfy 

the zero normal flow boundary condition of the body. The vortices are then 

repositioned to align with the flowfield. The procedure is continued with 

the new positions until a convergence criterion is satisfied. 

Three vortex models are examined, denoted the straight, segmented and 

curved vortex models. 

2.1 Potential Solution 

The flow is assumed to be inviscid, incompressible+ and irrotational 

except for along the isolated vortex singularities. The flow velocity can be 

written as a superposition of the uniform free stream u, , the vortex induced 

contributions &, and a potential velocity v+ which decays away far from the 

body. This velocity vector has the form 

u = u, + 77, + 04. (2-l) 

In the flowfield, the potential satisfies 

v21$ = 0. (2-Z) 

Denoting the body surfaces as S, the Neumann boundary condition results from 

Lii = 0 on S, (2-3) 

or, 
vl$.n = -(iJ, + cl,) .ii (z-4) 

Following the procedure of Smith and Hess, the solution to (2-2) with 

the constraint that $ tends to zero far from the body and the boundary 

condition (2-4) can be expressed at any point 5 in the flow as 

'Compressibility effects can be approximated by the use of the Gothert 
transformation. 



d PI =lj-& ds 3 
S 

(Z-5) 

where 6 lying in the surface is the integration variable and r(p,a) is the 

distance between the points. Substitution of (2-5) into the Neumann 

boundary condition for 6 tending to the surface yields the equation for 

the source densitya, 

(2-6) 

The solution of this integral equation can be approximated by considering 

the body as number of flat panels of constant a. 

The linear system resulting from the discretization of equation (2-6) 

is solved using the modified Gauss-Siedel described by Hess. After the 

first iteration of the position algorithm, the previous iteration's 

solution for the source density distribution o can be used as an initial 

guess in solving the linear system. 

For ease in notation a Cartesian coordinate system is assigned to the body 

with the origin at the nose tip, the x-axis extending along the body centerline 

and the y-axis in the angle of attack plane. All distances are scaled by the 

body length and velocities by the free stream velocity. Many of the experimenters 

use the base diameter to characterize the length scale in the publication of their 

results. The coordinates can be stretched to allow direct comparison with these 

results by taking the model distances times the fineness ratio f. Comparisons in 

the later section use this to plot equivalent values. 

2.2 Straight Vortex Method 

The simplest vortex singularities to include in the wake are the line 

vortices. As shown in Figure 2a, the wake is modelled by straight line 

vortices extending from the connection points on the body. The approximate 

images inside the body connect the vortex lines from the opposite sides of 

the body. The image vortices reduce the circumferential gradients in the 

source density, allowing a more sparse panelling. The images are 

approximated by a series of vortex segments connecting the crossflow image 

positions. The vortex induced velocity at any point not on one of the 
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vortices can be written as a sum of the components from each vortex and 
from the images. These components follow directly from the Biot-Savart 

law and are derived in the appendix. The vortex induced velocity at any 

point along one of the vortices is computed by summing the components from 

each of the other vortices and the images. There is no self-induced 

velocity for a straight line vortex. 

The positioning algorithm attempts to align the vortex with the flow 

in a time-like fashion. A number of points along each line are convected 

with the flowfield using an Euler time step approximation. A line drawn 

through the new points in the best least squares sense is chosen as the 

new position for the vortex. The reference points are then redefined to 

lie on the newly positioned line vortex. A straight line cannot generally 

align closely with the flowfield both near and far from the body. The 

reference points can be positioned or weighted according to that region 

being modelled. 

2.3 Segmented Vortex Model 

To allow the vortex to align with the flow in a larger part of the 

wake region, the line can be kinked into connected segments (see Figure 2b). 

The design of this model is for two or three segments with a number of 

reference points marking out each segment. The approximate images and 

induced velocities away from the vortices are treated as in the straight 

vortex case. 

By choosing the reference points to lie away from the segment endpoints, 

the calculation of the self-induced velocity can ignore the segment on which 

'erence point 

segments except 

the point lies. The vortex induced velocity at each re 

results from summing over all the images and the vortex 

the segment on which the point lies. 

The positioning algorithm treats each segment simi ar to the line 

vortex model. The segments closest to the body are repositioned first, 

using the best fit line through the convected reference points. The 

length of the segments are to remain unchanged, so that once the initial 

segments are positioned, the initial point for the next segments are 

determined. 
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The direction of these segments is determined by the best line through 

the convected reference points associated with them. The last reference 

point in each segment can be associated with the next segment in the 

repositioning, since the vortex axial flow can convect the fluid element 

that the point represents into the region represented by that next segment. 

In this model the segments must be long enough that the curvature 

effects associated with the bends are unimportant at the reference points. 

A more complex model results when the segment lengths are allowed to be 

sufficiently small that for computing the self-induced velocities the 

vortex is treated as a curve. This will be denoted as the curved vortex 

model. 

2.4 Curved Vortex Model 

The velocity induced at any point in the flow not lying directly on 

one of the vortices is determined as in the segmented vortex model with 

the exception being a slight change in the image calculation. The images 

are usually determined by connecting the crossflow images of the segment 

endpoints over ninety percent of the body. For bodies with noncircular 

cross section, the images are taken as straight segments from the attach- 

ment points of the vortices to a common connection point near the tail end 

of the body. 

The velocity induced at a point lying on one of the segments is 

computed by modeling the closest region of the vortex by a circular arc 

through the nearest three segment endpoints and assuming a finite vortex 

structure. This self-induced velocity is discussed in detail in the 

appendix. The velocity induced by the other segments on the vortex are 

computed as before. 

The positioning algorithm assigns a single reference point to each 

segment. The vortices are repositioned by aligning the segments with the 

velocity field calculated at the corresponding reference points. In this 

procedure the segment lengths are held constant and the initial segments 

(connecting to the body) can either be aligned with the surface streamlines 

or held with unchanged direction. This last option arises to give the 

freedom to choose some off-body points through which the vortices must pass. 
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CHAPTER 3. MODEL EVALUATION 

In an attempt to limit the investigation and allow the model to be 

tested, the nutier of flow conditions and body shapes have been restricted 

to those corresponding to the most accessible experimental results. 

Most of the analysis was done for a tangent ogive cylinder with nose 

fineness ratio of 2.59 and total fineness ratio of 10.3. This corresponds 

to the MX configuration denoted as NlBl and can be compared with the tangent 

ogive reported by Clark and Thompson and Morrison. Some other body shapes 

are examined in Section 4.3, comparing positioning results for ogive noses 

with elliptical cross section. 

The experimental flow conditions are characterized by the Mach number, 

Reynolds number and angle of attack. Since the water tunnel experiments of 

Clark and Spangler and Mendenhall are used for estimating the initial 

positions and for positioning comparisons, the model is run at zero Mach 

number. The Reynolds number effects can enter the model only in the 

vortex attachment points and the core radius. The behavior of these 

parameters with variation in Reynolds nutier is not obvious and could 

provide a study in itself. The attachment points are taken from Clark's 

experiments when possible. Other sources will be credited when the 

appropriate case results are given. The core radius is taken as one tenth 

the body diameter. This seems to be of the appropriate scale and does not 

appear to cause drastic changes for small variations. The angle of attack 

range for applicability of the model needs to be determined. For small 

angle of attack the body pressure distributions indicates either no flow 

separation (or a negligible effect of flow separation) over most of the 

body. For slightly larger angles the flow separates, but the vortices 

formed do not separate from the shear layer before the end of the body. 

Results in this range of angle of attack cannot be consistent along the 

body because the vortices in the model must have constant vorticity. 

However, the pressure distribution at a particular axial station may agree 

with experiment as in Figure 3. The angles of attack of interest for 

applying the model are those large enough to exhibit non-zero side forces. 

Judging from the MX integrated pressures, the side force versus angle of 

attack curve appears to deflect from zero at 30" angle of attack (see 
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Figure 4). At the angle of 45" an asymtric wake is the more comnon 

configuration. These two angles are chosen as the primary test angles. 

Other angles are used when the experimental values are not given at 30" or 

45' and to examine variations with angle of attack. 

Panel Parameters 

The panels used to represent the body are formed by splitting the body 

into 30 bands along the body axis with two concentric bands on the tail end. 

Each band is then split into 24 panels by cuts through the x-axis. On the 

leeside of the body 15 of the 24 panels are positioned with even spacing. 

The concentration on this side is designed to allow better resolution in 

the region of rapid changes due to the vortex influence. Numerical 

experimenting indicates that the number of panels needed to examine the 

positioning algorithm is much smaller than the above, but the large 

number is necessary to resolve the body forces with this first order panel 

method. 

For the cases examined in this study, the number of panels is the 

dominant factor in determining the cost for each iteration of the position- 

ing algorithms. For the numbers described above, the computer time runs 

about 25 CPU seconds on a CDC 7600. 

3.1 Potential Assumption 

The assumption that the potential flow approximation is valid away 

from the wake region can be examined by looking at the pressures for low 

angles of attack and along the windward side of the body. In Figure 3 the 

circumferential coefficient of pressure distribution is plotted for 

increasing angles of attack along with typical wind tunnel measurements from the 

MX tests. These are taken at an axial station at about 35 percent along 

the body. The windward meridian of the body marks the origin for theta in 

this figure. As the angle of attack increases the values of the pressure 

coefficient on the leeside deviate from the potential solution without 

vortices. The presence of the vortices tends to correct the curve toward 

the experimental values for the case and station shown in this figure; 

however, in this particular case the correction is far too small or too 
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large at other stations along the body. The pressure coefficients on the 

windward side of the body remain in good agreement with the experimental 

values even for larger angles of attack. 

3.2 Vortex Parameters 

The velocities induced in the model are defined by several parameters 

which must be determined from experiment. The number of vortices, attach- 

ment points, vortex strength and the singularity cutoff are all determined 

by comparison with experiments. The magnitude of vortex strength used is 

based on the correlation with angle of attack by Yanta and Wardlaw (20) for 

a similar body and has the form 

1 rl = .24 sin CY, (3-l) 

where the vortex strength r is scaled by the body length and the free- 

stream velocity. The vortex attached closest to the front of the body is 

given vortex strength from 10 to 50 percent less than the value determined 

by (3-l). The strengths of the first and last vortices are adjusted to 

force the sum of the strengths from all the vortices to be zero. The value 

of 1 rl given by (3-l) applies to the maximum strength. 

The number of vortices and attachment positions included in the 

wake also depends on the angle of attack. Clark (13) correlated the 

extrapolated vortex attachment position for up to aboutfourvortices over 

a wide range in angle of attack. These attachment positions are used in the 

model for vortices attaching before about 90 percent of the body length. 

The point around the body to which the vortex attaches seems to have little 

effect on the final vortex position when the curved vortex model is used. 

An input error resulting in all the vortices attaching on the same side of 

the body did not result in significantly different converged positions. 

The singularity cutoff is determined by testing the model over a range 

of values and judging the resulting forces and vortex position against the 

experimental values to fix a single value for further use of the model. The 

analysis of this parameter is discussed further in Section 3.4. 
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Care must be taken in judging flow visualization to give input to 

the model. A picture taken during the MX wind tunnel experiment 

is shown as Figure 5. The wake appears to contain a pair of 

asymmetric vortices extending from the body. Measuring the position from 

the top and side view pictures and using these as initial positions, the 

straight line model gave the converged positions indicated by the views from 

the side and above as shown in Figures 6 and 7. Although the side view is 

similar to the experimental picture, the view from above is not. The 

experimental view from above the model shows the vortices lying directly 

above the cylinder, while in Figure 7 they move off to the left. This can 

be corrected by adding a third vortex, unseen in the experiment. The 

inclusion of a weak third vortex pulls the original pair back above the body 

as shown in Figures 8 and 9. 

3.3 Positioning Algorithm 

The nu&er of iterations required for convergence varies considerably 

between the three models. The curved vortex model converges rapidly for a 

small number of segments. In those cases with less than forty vortex 

segments (excluding images) convergence occurs in about ten iterations. 

For much larger numbers of segments the required number of iterations 

increases significantly unless a good initial guess for the vortex positions 

is available. 

The straight line model uses an approximation to the time dependent 

behavior to relax to the steady solution. Forty iterations of the 

positioning algorithm would not be uncommon for the model with two vortices. 

Some test cases do not converge to a steady solution, but have an oscillatory 

behavior. These are examined further in Section 4.1. 

The segmented vortex model has the worst positioning behavior of the 

three models. The number of iterations required for convergence appears 

prohibitive. Unlike the straight line model which is somewhat predictable 

at each iteration step based on the previous few steps, the segmented model 

can make large changes in position. The constraint that the segments 

remain of constant length appears to cause erratic behavior in the segments 

away from the body. The same oscillatory behavior seen in the line vortex 
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model may also be appearing in the-first segment of the segmented model. 

No further studies have been conducted for this model. The positioning 

algorithm must be modified before it can be used. 

3.4 Singularity Cutoff 

The cutoff distance in the vortex induced velocity only becomes 

important in that region where the vortex attaches to the body. Any panel 

control points close to the vortex or vortex reference point close to its 

image can feel an induced velocity of unrealistic magnitude. The effect 

of the cutoff parameter is to smooth out those induced velocities, acting 

to at best crudely imitate the shear layer in this region. At larger 

angles of attack, when the vortices are attached to the body through the 

shear layer for only a small distance, the effect of this crude approxima- 

tion is felt over a small portion of the body. 

The effect of variations of the cutoff parameter on the vortex positions 

can be used to eliminate ranges of values for that parameter. The relation of the 

cutoff to the segment length in the curved vortex model or the reference 

point separation in the straight vortex model greatly effects the position- 

ing. When the cutoff and segment length are both small in the curved 

vortex model, the calculations of the first or second vortex segment 

directions are dominated by the image induced velocity. A vortex with 

segment lengths sufficiently large to prevent the first few segments from 

lying too close to the body surface can develop sharp bends for low angles 

of attack if a later segment moves near to the body. For 30" angle 

of attack and vortices attached symmetrically at x = -125 the vortices 

stay close to the surface for about fifty percent of the body length. 

The converged positions varied considerably with the choice of the cutoff 

parameter. At larger angles of attack the vortices move away from the body 

quickly, reducing the effect of the cutoff except on the first segment 

position. If the cutoff parameter is too large, the curved positioning 

algorithm can align the vortices with the vortex free potential flowfield. 

These considerations, along with a constraint on the total nutier of 

segments, give bounds on the value of the cutoff parameter and the segment 

lengths for the curved vortex model. The nominal values used for the 

segment lengths are .05 for the initial segment and .l for all remaining 
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segments on a vortex. The vortices extend to about twenty percent beyond the 

body above the x-axis , then align with either the free stream or the asymptotic 

slope. 

In the straight vortex model the reference points nearest the bodies 

are lightly weighted in the positioning algorithm to alleviate the 

sensitivity to the cutoff parameter. However, the effect of increasing 

the cutoff at smaller angles of attack (30" or less) is to move the 

symmetric vortices closer together. This behavior makes the cutoff value 

difficult to access, though extreme values can be eliminated. 

Once the range for the cutoff parameter has been determined for the 

30" angle of attack, the final test values are taken as the minimum values 

in that range. These values are .Ol for the curved vortex model and .02 

for the straight vortex model. The values large enough to prevent position- 

ing problems for the 30" angles of attack are easily large enough for the 

45" cases. A test case for the curved vortex model at 45" angle of attack 

to verify the choice of parameters discussed above converges in ten 

iterations and compares well with experimental force coefficients. The 

model normal and side force coefficients have magnitudes of 5.1 and 1.3. 

The corresponding values from the MX tests at .4 Mach number range from 

4.0 to 5.6 and 0.1 to 1.9 for various Reynolds numbers. The side view of 

the final positions appears as Figure 13. 
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CHAPTER 4. VORTEX POSITIONS 

Two aspects of the positioning algorithm behavior are of interest. 

The computed vortex positions can be compared with the results of flow 

visualization experiments. Also, the non-uniqueness of the steady solutions 

steady solutions can be examined. 

4.1 Straight Vortex Positions 

At 30" angle of attack the straight line vortex model with two vortices 

constrained to be symmetric does not converge in the first twenty iterations. 

A plot of the crossflow positions of the vortices shows the behavior to be 

oscillatory. The positions of one of the vortices for two initial 

conditions is shown in Figure 10. The conjecture for this case is for the 

existence of a (neutrally) stable point lying inside the inner loop in 

Figure 10. If the initial condition were for a vortex passing through this 

point, perhaps the algorithm would not move the vortex. 

The 45" angle of attack results for the straight line model have been 

discussed in Section 3.1 and shown in Figures 8 and 9 as an example of the 

effect of additional vortices on the positions. The direction of the 

asymptotes for the straight vortex model can be compared with those 

measured by Clark in the water tunnel or Thompson and Morrison at low 

Mach number. If the vortices make an angle 5 with the body axis in the 

angle of attack plane, then the parameter 

x = tan S/tan ~1 (4-l) 

is used to correlate the data. For the straight vortex results at 45" 

the value of x is .53, smaller than the typical experimental value of 0.8. 

However, since the straight model does not locally align with the flow, 

but rather aligns with the average velocity, the direction cannot be 

expected to agree with the asymptotic direction. 

4.2 Curved Vortex Positons 

To demonstrate a lack of uniqueness for the vortex positions when 

the initial positions are varied requires only a single counterexample. 

However, a number of test cases were run without any distinct multiple 
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solutions. Symmetry in the initial condition yielded symmetric positions 

except when the vortex strengths were taken to be asymmetric. The 

positions then lost the symmetry. When the strength of the vortices were 

set back to be symmetric and the asymmetric positions used as initial 

conditions, the vortices returned to the symmetric configuration identical 

to that for the symmetric pair with symmetric initial conditions. 

To compare the vortex curve positions with the experiments of Clark 

and Thompson and Morrison, a series of cases were run for angles of attack 

of 35", 4o", 45", 50", and 55' following the guidelines for choosing the 

parameters. The 45' cases were run for both three and four vortices. The resulting 
vortex positions are shown in Figures 11 through 16. The values of x given 

by Equation (4-l) are plotted in Figure 17 for the angles measured from 

the position pictures, the asymptotic angles and the range of possible 

measured angles. Included as well are the value from Clark's experiments 

and the estimated values from the lowest Mach number results of Thompson 

and Morrison. All of the experimental values fall in the range of the 

possible measurements from the model. 

For the 30" angle of attack symmetric cases the vortices stay much 

closer to the surface than is observed or predicted by the crossflow 

calculations. One possible explanation for this behavior is the absense of 

a shear layer in the model. The resulting constant strength vortex pair 

mutually induce velocities holding them close to the surface. The cutoff 

large enough to prevent what could be interpreted as erratic behavior nullifies 

the image effect. 

4.3 Elliptic Nose 

The experimental study of Spangler and Mendenhall includes an ogive 

nose of elliptical cross section for both major axis horizontal and major 

axis vertical with respect to the freestream. The fineness ratio based on 

the equivalent base diameter is 5.0 and the ratio of the major to minor 

axis in the cross section is 1.44. The experiments were run in a water 

tunnel using flow visualization to indicate the position of the first two 

vortices. An estimate for the vortex strengths was also determined from 

flow measurements. These parameters can be inserted directly into the 
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curved vortex model to examine the positioning algorithm. The vortices 

not indicated in the experiment must be given an estimated position and the 

vortex which lies very close to the body approximated by a single fixed 

segment. The resulting positions for the first two vortices are shown in 

Figures 18 through 21, with the experimental values indicated by the dashed 

lines. For the major axis vertical case the first vortex lies slightly 

above and outboard from the experiment. In Figure 20 the side view of the 

major axis horizontal positions do not agree as well. The attachment point 

may be too far forward in this case and the shear layer continues to feed 

the vortex beyond the estimated position. The view from above shown in 

Figure 21 shows the nose vortex lies directly above the experimental 

position. 
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CHAPTER 5. BODY FORCES AND LOAD DISTRIBUTIONS 

In the evaluation of the choice of the cutoff parameter the agreement 

of the test case force coefficients with the MX wind tunnel experiments 

was mentioned. These need to be examined in more detail in order to 

evaluate the model. 

5.1 Variations of CN and Cy with .a 

The cases run for Section 4.2 to examine the behavior of the vortex 

positions with angle of attack also gave force coefficients. The values of 

the normal force coefficient CN is plotted against angle of attack in 

Figure 22. The solid symbols indicate the model approximation to the value 

for CN. Two of the values listed on this figure will be discussed in 

Section 5.2. The empty symbols are from the MX wind tunnel experiments at 

the lowest Mach number and a variety of Reynolds number. 

The equivalent values for the side force coefficient are much greater 

than the experimental coefficients for most angles of attack. A more 

careful examination of the forces can turn up the reason for the 

inconsistency between the agreements of the normal and side force 

coefficients. 

5.2 Cutoff Sensitivity 

Another form in which to examine the body forces is through the load 

distribution. The normal load distribution c, is the local contribution to 

the normal force coefficient based on the body diameter. To be consistent 

with the MX wind tunnel test, the results from the curved vortex model 

with three vortices are converted to dimensions based on the body diameter. 

The resulting distributions are plotted in Figure 23 for several 
values of the cutoff parameter. The effect of the vortices appear to be 

centered in the region immediately trailing the vortex attachment points. 

The wake prevents the potential fall off after the rise on the nose, but 

once the vortices move away from the body, the curve falls through zero. 

As a result the last twenty percent of the body gives a misleading 

contribution to the normal force coefficient. If these end effects were 

eliminated by including more (but weak) vortices, the effect should be to 
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increase the CN as shown in Figure 22. The values of CN adjusted by 

neglecting the normal load where the curve falls to zero are indicated by the 

solid squares and the values of CN which interpolate the normal load 

from ahead of the drop off in c, are indicated as corrected for end , 

effects by the solid diamonds. Both of these values are much higher 

than the experimental values, but larger CN would have resulted in 

the value of the cutoff parameter recognized as too small. For increasing 

values of the cutoff the behavior of the load distribution become more 

reasonable. 

5.3 Side Load Distribution 

The over-estimates in the side force coefficient discussed in Section 

5.1 are consistent with the results of the last section. The side load 

distribution plotted in Figure 24 for several values of the cutoff parameter 

indicates an order of magnitude over-estimate when compared to the 

experimental side force distribution. A possible reason for these peaks 

is that the asymmetric vortices are not balanced by opposing shear layers 

at the point of detachment. All the vorticity is concentrated near one 

side of the body at the first attachment points; then at the second stronger 

vortex the effect is switched. For the three vortex model with a cutoff of 

.Ol, the opposing components of the side force due to the two large peaks 

cancelled a large contribution, resulting in an estimate which agreed with 

experiment. 
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CHAPTER 6. DISCUSSIONS AND CONCLUSIONS 

A method has been developed to predict the three dimensional vortex 

flow field of aerodynamic bodies at high angle of attack. The panel method 

developed by Smith and Hess is modified to solve the Neumann potential flow 

problem with the addition of vortex filaments which approximate the wake. 

Three models for the vortex wake were examined. Straight line, segmented, 

and curved filament models were tested at several angles of attack on 

ogive cylinder and elliptical cross section bodies. 

Results of the present study showed that the curved vortex model could 

predict the positions of the vortices in the wake with good accuracy for 

angles of attack greater than 30 degrees. However, the empirical input required 

to obtain these results limits the models usefulness as a design tool. 

Currently the vortex strengths and attachment points must be approximated for 

use in the model. 

One way to reduce the empirical input and to improve the method would be 

to model the effects of the feeding shear layer. The shear layers could be 

approximated using panels with a double layer or dipole density to represent 

the vortex sheet. Similar methods have been developed to model the roll up 

behind a delta wing. 

The predicted normal and side forces are sensitive to the singularity cutoff. 

The purpose of the cutoff is to eliminate the singularity for numerical reasons 

and smooth the induced velocity in the panels nearest the vortex. Adjusting 

the cutoff range in a consistent fashion to eliminate the sharp peaks, but 

not to eliminate the augmented loads, should be possible. However, the panel 

size, vortex segment length and angle of attack need to be considered when fixing 

the cutoff value. Since the method uses a single reference point in each 

panel at which to enforce the Neumann boundary condition, the vortex induced 

velocity on the entire panel is judged by the value at the reference point. A 

large induced tangential velocity at the panel point creates a pressure peak 

which is attributed to the entire panel in the force calculation. Controlling 

these peaks with the cutoff parameter and adjusting the vortex attachment points 

to a maximum distance from the panel reference points tend to smooth the load 

distribution, but the physical mechanisms of the wake near the body are not 
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being modelled. The large over-estimate in the side force distribution 

and the failure of the model at lower angles of attack demonstrate the 

need for a higher level of sophistication in the model near the body 

before reasonable forces can be extracted. 

One of the primary objectives of the present work was to examine the 

possibility of multiple stable vortex positions. In no case did the 

curved filament model show the existence of multiple solutions for the same 

vortex conditions. The oscillatory behavior of the straight line model 

at 30" angle of attack probably arises due to the balance of the effects 

on the vortex near the body with the effects away from the body under the 

constraint that the vortex remains straight and cannot be used to conclude 

that large scale unsteady vortex configurations are responsible for 

variations in the side force measurements. 

The inability of the curved model to predict multiple positions indicates 

that experimentally observed multiple positions arise because either the vortex 

attachment points are changing or the vortex strengths are changing. Both 

of these may result from unsteady or quasi-steady boundary layer separation. 
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APPENDIX -- VORTEX INDUCED VELOCITIES 

The velocity induced by a vortex line or curve can be evaluated 

from the Biot-Savart integral, 

uv (i;) = - & 
Lf 

(F;-4, x dn. 

IF-{I3 ’ 
where { lies along the vortex, i is some point off the vortex and da 

denotes the directed element. 

For vortices approximated by a set of straight segments, the 

contribution to the integral of each straight section can be evaluated 

in closed form. The induced velocity due to a segment extending from 9, 

to i1 can be written 

(A-1) 

(A-2) 

where 

s = (s,-s,)/ls,-s,l 

is the normalized direction of the vorticity vector, and the superscript (i) 

denotes the ith segment. The contribution due to a semi-infinite ray can 

be obtained by taking the limit as :I tends to infinity, giving 

s x (ij-qo) 
q (p, = -& lp-q ( 

s. (P-6,) 
2 ol - ts.tfj-q )I2 ’ + w 1 (A-4) 

As the point l!~ approaching a vortex segment, the induced velocity 

increases like the reciprical of the distance. In order to prevent the 

unrealistic singularity from affecting the solution, a separate form for 

Ui (p) is used when the distance 

(A-5) 
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from the point fi to the segment is less than some specified cutoff 

distance co. The velocity 

s x (P-9,) 

cO 
2 Rm 

(A-6) 

decreases to zero with R(p). 

Self-Induced Velocity 

When the Biot-Savart law is used to compute the induced velocity 

of a curved vortex on itself, the integral does not give a finite velocity. 

In order to substract out the singularity without neglecting the self- 

induced velocity altogether, the segments approximation is refined and a 

vortex core structure is assumed. Moore and Saffman (21) and Widnall, 

Bliss and Zalay (22) demonstrated that the self-induced velocity of a 

curved vortex with specified vorticity distribution and core radius much 

smaller than its radius of curvature could be accurately approximated 

using the Biot-Savart law, but deleting a specified integration distance 

centered about the singularity. The integral cutoff distance E has the 

form 

log E = log (rc/2) + ; - $ 
J 

r 
c rv2dr + tw2dr (A-7) 

0 

where r 
C 

is the radius of the vortex, ris the circulation and v and w are 

the local swirl and axial velocities associated with the vortex. The 

vortex structure depends on the Reynolds number and the shear layer 

vorticity distribution. Leonard (23) gives a form for the local 

contribution for a vortex ring with uniform vorticity in the core by 

constructing a circular arc through three of the reference points marking 

the vortex ring. This can be applied directly to the computation of the 

self-induced velocity on one of the segments of the curved vortex model by 

constructing a circular arc through the previous segment initial point and 
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the initial point and endpoint of the current segment as shown in Figure 

25. Denoting the length of the two segments as ~1 and 112 and the angle 

between the segments as 8, the radius R, of the circular arc connecting 

the endpoints is given by 

4sin2e 
W-8) 

The self-induced velocity due to the closest segments then reduces to 

( 8R LlR2 

- 4 = 4JR, log (+) - .558 + '/2 log -~ 
C (2Rc+ w) (2Rc + G ) > 

(A-9) 

where rc is the core radius. ' The contribution due the remaining sections 

of the vortex are computed using the segment formula. 

'Notice that in Equation A-9 the axial velocity in the vortex has been 
neglected. This results from the assumption that the average axial 
velocity is small compared with the induced swirl velocity at the edge 
of the vortex. 
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DISTRIBUTION ON N2Bl AT 40 DEG ANGLE OF ATTACK (M = 0.6, Rd = 3.17 x 106) 



(a) STRAIGHT VORTEX MODEL 

\ 
X 

(b) SEGMENTED VORTEX MODEL 

FIGURE 2. MODEL GEOMETRY SHOWING IMAGES AND VORTEX REFERENCE POINTS 

29 



a = 10' 
- Potential Flow 

l Experiment 

CP 
-. 2 - 

-.4 - 

-. 6 I I I I 
0 180 Theta 

360 

.4 

1 

a = 15O - Potential Flow 
.2 l Experiment 

-. 6' I I 1 I 
180 Theta 

.4 

i 

--- 
a = 20° 

Line Vortex Model 
- Potential Flow 

.2 l Experiment 

GP 
-. 

-. 

-. 6 1 1 1 1 1 

0 180 Theta 360 

FIGURE 3. Potential pressure calculations compared with MX 
pressure measurements at axial station 35% down an 
ogive cylinder (NlBl). Line vortex model 
pressures included with a = 20' potential 
pressures. 

30 



ANGLE OF ATTACK, a 

I I I I I I I 
10" ZOO 3o" 4o" 50" 

1 
60' 

FIGURE 4. SIDE FORCE FROM INTEGRATING PRESSURES TAKEN 
AT .4 MACH NUMBER IN THE MX WIND TUNNEL TESTS 

0 MX RUN 283, M=.4, Re =2x10' 

0 MX RUN 284, M=.4, Re =1x10' 

A FIX RUN 285, M=.4, Re =.5x106 



FIGURE 5. MX WIND TUNNEL TESTS 
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FIGURE 6. STRAIGHT VORTEX MODEL APPLIED WITH 2 VORTICES 
FOR 45" ANGLE OF ATTACK, VIEWED FROM THE SIDE 
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FIGURE 7. STRAIGHT VORTEX MODEL APPLIED WITH 2 VORTICES 
FOR 45“ ANGLE OF ATTACK, VIEWED FROM ABOVE 
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FIGURE 8. STRAIGHT VORTEX MODEL APPLIED WITH 3 VORTICES 
FOR 45' ANGLE OF ATTACK, VIEWED FROM THE SIDE 
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FIGURE 9. STRAIGHT VORTEX MODEL AP 'PLIED WITH 3 VORTICES 
FOR 45" ANGLE OF ATTACK, VIEWED FROM ABOVE. 
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FIGURE 10. "OSCILLATING" SOLUTION FOR THE STRAIGHT LINE 
MODEL AT 30' ANGLE OF ATTACK. THE POSITIONS 
ARE MIRRORED BY THE SECOND VORTEX ACROSS THE 
Z = 0 AXIS 
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FIGURE 11. CURVED VORTEX MODEL APPLIED WITH 3 VORTICES 
FOR 35" ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
THE ANGLE 5 IS INDICATED AT THE FIRST VORTEX. 
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FIGURE 12. CURVED VORTEX MODEL APPLIED WITH 3 VORTICES 
FOR 40. ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
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FIGURE 13. CURVED VORTEX MODEL APPLIED WITH 3 VORTICES 
FOR 45' ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
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FIGURE 14. CURVED VORTEX MODEL APPLIED WITH 4 VORTICES 
FOR 45" ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
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FIGURE 15. CURVED VORTEX MODEL APPLIED WITH 4 VORTICES 
FOR 50' ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
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FIGURE 16. CURVED VORTEX MODEL APPLIED WITH 4 VORTICES 
FOR 55@ ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
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FIGURE 17. VARIATIONS OF x = tan S/tan a WITH ANGLE OF ATTACK 
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FIGURE 18. ELLIPTICAL OGIVE WITH MAJOR AXIS VERTICAL AT 
45' ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
THE DASHED LINE CONNECTS THE MEASURED POSITIONS 
FROM REFERENCE 14. 
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FIGURE 19. ELLIPTICAL OGIVE WITH MAJOR AXIS VERTICAL AT 
45" ANGLE OF ATTACK, VIEWED FROM ABOVE. THE 
DASHED LINE CONNECTS THE MEASURED POSITIONS 
FROM REFERENCE 14. 
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FIGURE 20. ELLIPTICAL OGIVE WITH MAJOR AXIS HORIZONTAL 
AT 45" ANGLE OF ATTACK, VIEWED FROM THE SIDE. 
THE DASHED LINE CONNECTS THE MEASURED POSITIONS 
FROM REFERENCE 14. 
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FIGURE 21. ELLIPTICAL OGIVE WITH MAJOR AXIS HORIZONTAL 
AT 45" ANGLE OF ATTACK, VIEWED FROM ABOVE. 
THE DASHED LINE CONNECTS THE MEASURED POSITIONS 
FROM REFERENCE 14. 
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FIGURE 24. SIDE LOAD DISTRIBUTION AT 45' ANGLE OF ATTACK FOR 
VARIATION IN THE CUT OFF PARAMETER 



FIGURE 25. GEOMETRY FOR THE CALCULATION OF CURVATURE 
CONTRIBUTIONS IN THE CURVED VORTEX MODEL 
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